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Results  are  shown of a study concerning the effect of ol igomer block length and flexibil'ity on 
the t empera tu re  cha rac t e r i s t i c s  of thermophysica l  proper t ies ,  on the internal s t r e s ses ,  and 
on the s t ruc tura l  t rans format ions  of ol igomer sys tems.  

It has been discovered in a study concerning the thermophysical  proper t ies  of ol igoether maleinates  
[1] that the var ia t ion in thermophysica l  p roper t i es  with an ex t remum within a cer tain t empera tu re  range is 
due to slower relaxation p rocesses  and the formation of a lattice s t ruc ture  of associa ted  ol igomer  molecules .  

In this study the authors  were concerned with the effect of ol igomer block length and flexibility on the 
t empera tu re  cha rac t e r i s t i c s  of their  thermophysica l  proper t ies ,  on their  internal s t r e s ses ,  and on the 
s t ructural  t rans format ions  of ol igomer sys tems.  

We studied ol igocarbonate methacry la tes  [2] with a regu la r  distr ibution of active functional groups of 
vary ing  lengths and flexibility: blocks of b i - (methaory l -oxyethylene  carbonate)  ethylene glycol (MOCEG), 
b i - (methacry l -oxye thy lene  carbonate)  butylene g lyco l - l ,4  (MOCEB), b i - (methacry l -oxye thy lene  carbonate)  
hexamethylene g lyco l - l ,6  (MOCHG), and b i - (methacry l -oxyethylene  carbonate)  diethylene glycol (MOCDG). 

The thermophysica l  p roper t i es  were studied over the t empera tu re  range f rom --180 to +100~ by the 
adiabat ic-shel l  method under quasis teady thermal  conditions [3]. Liquid o l igomers  were poured into a 
quartz  jar  in the shape of a hollow cyl inder:  inside radius 11.5 mm, outside radius 13.0 ram, and height 
100 mm. The polymer  specimens cast  and cured in this manner  had the same dimensions.  The t h e r m o -  
physical p roper t i es  were determined within a +5 to 10% accuracy .  The internal s t r e s s e s  were examined 
bv the opt ical -polar izat ion method throughout the same tempera tu re  range. The effect of t empera ture  on 
the s t ructura l  t r ans format ions  of o l igomer  sys tems  was examined by the rheologieal method with a Shvedov 
apparatus  compr i s ing  two coaxial cyl inders  as well as by infrared spec t roscopy with a model UR-20 spec-  
t rophotomete r. 

The variat ion in the thermal  conductivity, the thermal  diffusivity, and the specific heat of o l igocar -  
bona temethacry la tes  over  a wide t empera tu re  range is shown in Fig. 1. It is quite evident that the thermal  
conductivity of an ol igomer is not a monotonic function of the tempera ture ;  it reaches  an ex t remum at some 
tempera tu re  which depends on the s t ruc ture  of the ol igomer block. For  a longer and more  flexible ol igo- 
mer  block this maximum inc reases  and shifts toward lower t empera tu res ,  while the a rea  under the t e m -  
pera ture  curve within that range also increases .  Within that range one also notes inflection points on the 
t empera tu re  curves  of thermal  conductivity. 

The formation of a spatial latt ice in o l igomer  coatings, as a resul t  of chemical  bonds produced dur-  
ing polymerizat ion at 80~ shows no substantial effect on the t rend of these t empera tu re  cha rac te r i s t i c s .  

Fig. lb  is shown the effect of t empera tu re  on the thermophysica l  proper t ies  of lattice po lymers  
fo rmed f rom ol igomers  with var ious  block s t ruc tures .  Evidently, the thermophysica l  p roper t i es  of poly-  
m e r s  with spatially interlinked chemical  bonds a re  also not monotonic functions of the tempera ture :  their  
t empera tu re  cha rac t e r i s t i c s  pass  through maxima and inflections. 
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Fig. 1. T e m p e r a t u r e  c h a r a c t e r i s t i c s  of the the rmophys ica l  p r o p -  
e r t i es :  a) o l igocarbonate  me thac ry l a t e s ;  b) lat t ice p o l y m e r s  
fo rmed  at 80°C; 1, 2, 3, 4 ) c ( k J / k g ' ° C S ;  5, 6, 7, 8 ) ~ ( W / m ' ° C ) ;  
9, 10, 11, 125 a(m2/sec);  1, 5, 9)MOCDG; 2, 6, 105 MOCHG; 
3, 7, 11) MOCBG; 4, 8, 12) MOCEG; t e m p e r a t u r e  T(°C}. 

Unlike the case  of o l igomers ,  these  special  values  occur  nea r  the g l a s s - t r a n s i t i o n  t e m p e r a t u r e  and 
they a re  assoc ia ted  with a par t ia l  breakdown of the la t t ice  s t ruc tu re  during the t rans i t ion  of a po lymer  to 
i ts  supe r - e l a s t i c  state (Fig. lb). F o r  longer  and m o r e  flexible 01igomer blocks the max imum the rma l  con-  
ductivity shifts  toward lower  t e m p e r a t u r e s ,  following a change in the g l a s s - t r ans i t i on  t e m p e r a t u r e .  

In o rde r  to explain the causes  of this amonotonic t rend,  we examined the effect  of the o l igomer  block 
s t ruc tu re  on the ra te  of re laxat ion p r o c e s s e s  within the same  t e m p e r a t u r e  range,  e s t imat ing  this effect  on 
the bas i s  of the internal  s t r e s s e s .  The t e m p e r a t u r e  c h a r a c t e r i s t i c s  of the in ternal  s t r e s s e s  a re  shown in 
Fig. 2 for  o l igomers  with va r ious  block s t ruc tu r e s  (curves 4-65 and for  r e spec t ive  o l i g o m e r - b a s e d  coa t -  
ings (curves 1-35. As the t e m p e r a t u r e  of an o l igomer  d e c r e a s e s  to --10 and --20°C, the re  appear  internal  
s t r e s s e s  in the s y s t e m  which bui ldup l inear ly  until they reach  a constant  level  at a t e m p e r a t u r e  c o r r e s p o n d -  
ing to the max im um  values  of the the rmophys ica l  p rope r t i e s .  In a longer  and m o r e  flexible o l igomer  
block the s t r e s s e s  extend to the sur face  and r each  the i r  l imi t s  at lower  t e m p e r a t u r e s .  

The internal  s t r e s s e s  in spat ia l ly  inter l inked p o l y m e r s ,  as  a function of the t e m p e r a t u r e ,  follow an 
analogous trend.  At a t e m p e r a t u r e  above the g l a s s - t r an s i t i on  point the internal  s t r e s s e s  re lax  a lmos t  c o m -  
pletely.  As the t e m p e r a t u r e  dec rea se s ,  the s t r e s s e s  inc rease  to the i r  l imi t  at a t e m p e r a t u r e  c o r r e s p o n d -  
ing to the m a x i m u m  values  of the the rmophys ica l  p r o p e r t i e s  of the respec t ive  o l igomer ,  and beyond which 
they r ema in  essent ia l ly  constant.  
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Fig. 2. Internal s t resses  ~ (kg 
/em 2) as a function of the tem- 
perature T(~ for oligomers 
(curves 4, 5, 6) and for respec-  
tive oligomer-based coatings 
formed at 80~ (curves 1, 2, 3): 
1, 4) MOCEG; 2, 5) MOCBG; 3, 
6) MOSDEG. 

The monotonically decreasing thermal conductivity and thermal diffusivity of spatial-lattice polymers, 
as well as the absence of any special points within the low-temperature range of their characteristics, are 
apparently related to an appreciable slowdown of the relaxation processes and to the lower mobility of struc- 
tural components in this temperature range. About the glass-transition temperature, on the other hand, 
complete relaxation in the system is prevented by a breakdown of bonds between structural components of 
a spatial lattice as well as by a higher mobility of these components, accompanied also by an extremal trend 
of the thermophysical properties. 

The appearance of internal stresses in an oligomer system and their buildup to a constant limit can 
be attributed to the formation of a lattice structure by the associated oligomer molecules. 

The maxima in the low-temperature range of thermophysical properties, in the case of oligomers, 
are probably a consequence of incomplete relaxation in an oligomer lattice with high-mobility structural 
components and formed by physical bonds -- unlike the lattice of spatially interlinked polymers. In order 
to verify this hypothesis, we have studied the effect of temperature on the theological properties of oligo- 
mer blocks of varying flexibility. 

The viscosity as a function of the shearing stress in oligocarbonate methacrylates is shown in Figs. 3 
and 4 for various temperatures. The MOCEG oligomer with shortest and most rigid blocks (Fig. 3a) repre- 
sents a system which is weakly structurized within temperatures from +20 to --15~ 

As the temperature decreases, the viscosity of the system increases fast and without any significant 
change in the trend of the rheological curves. This indicates that a decrease in the temperature of such a 
system is not followed by a substantial aggregation of structural components. Under these conditions, ap- 
parently, the formation of a lattice structure is effected as a result of local physical bonds between the 
original structure components. 
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Fig 3+ Logarithm of the viscosity versus  logarithm of the 
shearing stress:  a) for MOCEG at: 1) +10~ 2) 0~ 3) 
--15~ 4) --25~ 5) --40~ b) for MOCDG at: 1) +10~ 
2)--10~ 3)--27~ 4)--40~ 5)--50~ 
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Fig. 4. Logar i thm of the v i scos i ty  v e r s u s  logar i thm of the 
shear ing s t ress :  a) for  MOCBG at: 1) +10~ 2) --10~ 3) 
--30~ 4) --40~ 5) --60~ b) for  MOCG at: 1) +10~ 2) 
--20~ 3)--300C; 4)--45~ 5)--55~ 

The t e m p e r a t u r e  char~/cter is t ies  of the rheological  p r o p e r t i e s  follow a different  t rend in the case  of 
the MOCDG ol igomer  with a m o r e  flexible block (Fig. 3b). MOCDG is m o r e  s t ruc tu r i zed  at --15~ than 
MOCEG. As the t e m p e r a t u r e  d e c r e a s e s  fu r the r  to --30 and --150~ the difference between the v i scos i ty  of 
a broken down s t ruc tu re  and that of a re ta ined s t ruc tu re  will inc rease ;  at the same t e m p e r a t u r e ,  m o r e o v e r ,  
the v i scos i ty  of a broken down MOCDG s t ruc tu re  is  by two decimal  o r d e r s  of magnitude lower  than the v i s -  
cos i ty  of a MOCEG s t ruc ture .  This  is,  apparent ly ,  due to an aggregat ion of s t ruc tura l  components  with an 
accompanying t e m p e r a t u r e  drop and a subsequent format ion  of a lat t ice f r o m  la rge  supe rmolecu l a r  s t r u c -  
tu res .  

With r ega rd  to the effect  of t e m p e r a t u r e  on the i r  rheological  p rope r t i e s ,  MOCEG and MOCDG rank 
as  in te rmedia te  between rigid and flexible o l igomer  blocks in our study here .  As the t e m p e r a t u r e  dec rea se s ,  
the MOCEG o l igomer  s t ruc tu r i ze s  weakly (Fig. 4a) and the t e m p e r a t u r e  cha r ac t e r i s t i c  of i ts  rheological  
p r o p e r t i e s  approaches  that of the MOCDG ol igomer .  

The s t ruc tur iza t ion  of o l igocarbonate  m e t a c r y l a t e s  at va r ious  t e m p e r a t u r e s  f rom +50 to --100~ was 
examined by in f ra red  spec t roscopy .  Some shift of the absorpt ion bands has  been detected,  cor responding  
to osci l la t ions  of the var ious  functional groups,  with a s imul taneous  change in the intensi ty of these  bands. 

Thus,  the f requency of the absorpt ion band cor responding  to a n t i s y m m e t r i c  va lence  osci l la t ions  in 
methylene groups  dee rea seddu r ing  cooling f r o m  2938 to 2928 em -~ in the case  of MOCDG and f rom 2945 
to 2933 cm -1 in the case  of MOCEG. The re la t ive  intensi ty of these  bands inc reased  at the same t ime  by 
approx imate ly  30%. These changes  occu r r ed  essen t ia l ly  while the t e m p e r a t u r e  of MOCDG droppedto- -80~  
and the t e m p e r a t u r e  of MOCEG dropped to --65~ a fu r the r  drop to --100~ produced ne i ther  a fu r the r  
shift  nor  a higher  re la t ive  intensi ty of the absorpt ion band for  methylene groups .  According to [4], these  
r e su l t s  may  be r ega rded  as evidence that  hydrogen bonds are  f o rmed  by methylene  groups.  

Within the range of va lence  osci l la t ions  in C--O groups  at about 1175, 1040, and 1275 cm -1, the in-  
tens i ty  of the absorpt ion bands for  all  spec imens  inc reased  somewhat  during cooling down to --60 and 
--80~ while fu r the r  cooling down to --100~ was followed by an apprec iab le  dec rea se  in the intensity.  
This  is,  apparent ly ,  re la ted  to a somewhat  changing lengths of bonds in a molecule  during the t rans i t ion  of 
a po lymer  to solid state,  when the der iva t ive  of the dipole moment  changes  and this  c ause s  a change in the 
intensi ty of the absorpt ion bands.  

During cooling through the t es t  range of t e m p e r a t u r e s ,  the re la t ive  intensi ty of the absorpt ion bands 
cor responding  to valence  osc i l la t ions  in C = C groups  at about 1660 em - I  i nc reased  more  signif icantly than 
for  any other  functional groups  in the sys tem.  While for  MOCDG this  i nc rea se  ceased  a t  about --80~ for  
MOCEG it c ea sed  a l ready  at about --65~ Fur the r  cooling down to --100~ did not produce a fu r the r  change 
in the re la t ive  intensity.  This  is c h a r a c t e r i s t i c  of that given group for  which the intensi ty of the a b s o r p -  
tion band depends la rge ly  on the configurat ion of adjoining functional groups  [6] and, the re fo re ,  on the con-  
f igurat ion of the ent i re  mac romolecu le .  
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N O T A T I O N  

is the temperature,  ~ 
is the thermal conductivity, W/m" ~ 
is the thermal diffusivity, m2/see; 
is the specific heat, kJ /kg .  ~ 
are the internal s t resses ,  kg/cm2; 
is the logarithm of the shearing stress;  
is the logarithm of the viscosity. 
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